

CMOS Disruptive Sensing Systems for Dual Applications

From leading edge research to working prototypes

Alex Zviagintsev, Alex Katz, Maria Malits, Tanya Blank, Igor Brouk, Sharon Bar-Lev, Sara Stolyarova, Alexander Svetlitza and Yael Nemirovsky, IEEE Fellow

Why CMOS?

- Matured / Established Technology
 - Low Cost (wafer level, 8 inch)
 - Low Power
 - Low Weight
- Available: TowerJazz, STM, XFAB, TSMC, **Global (former IBM) Foundries**
- Enables smart sensors, integrating on a SoC
 - Drivers, Temperature compensation, Offset and noise reduction

Our CMOST unique technology

Transistor

holding arm:

ntacts to transistor thermal isolation

Patterns accuracy and alignment are

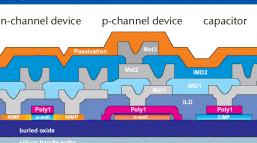
determined by the CMOS technology

- Amplification, signal processing, wireless recharging/ transmission
- Sensor fusion

Why MEMS?

- MEMS/NEMS: the 21st Century **Microelectronics Revolution**
- MEMS Chips Interact with the outside world
 - VLSI/ULSI dies with > 100 mln transistors respond only to electrical signals
 - MEMS/NEMS: enabling technology to integrate sensors for different physical or chemical parameters and actuators on die, forming SoC-system on chip

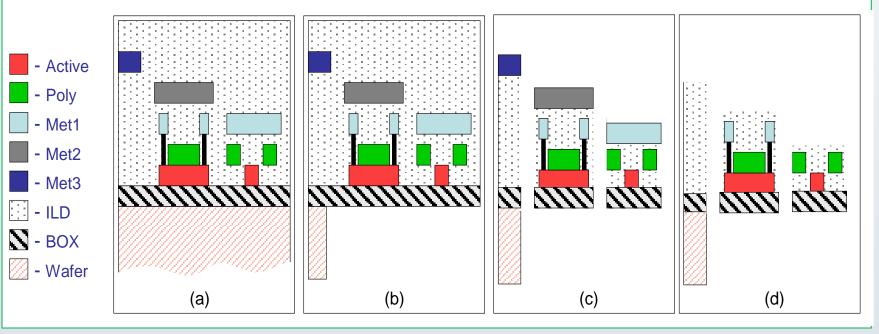
• The benefits of scaling down


- Weight reduction as (dimensions)³
- Strength reduction linear with dimension

• The benefits of batch production

– Mass production

CMOS-SOI-MEMS/NEMS: CMOST"TM"


- CMOS-SOI Wafer Fabrication
 - Standard FAB:IBM, XFAB, STM ..
- Back Side handle removed by DRIE

BOX provides etch stop

Front Side dielectric layers removed by RIE

- CMOS–SOI metal layers (Al/Cu) provide Built-in Masks for the MEMS spared by Fluorine plasma
- Front Side Metal Masks are removed by etching

- Ideal for mobile applications
 - Military
 - Commercial IoT, Wearables

No need for expensive masks

No need for 3D alignment

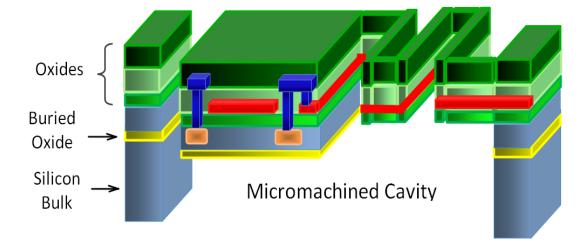
- Low cost

- Green industry
- Dual Use applications (military/consumers)

With MEMS

- Thermal TMOS IR uncooled Sensors
- Thermal TeraMOS THz uncooled Sensors
- Thermal GMOS Gas Sensors

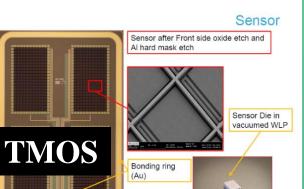
W/O MEMS


- CMOS SPAD camera for detection of gun flash
- **CMOS SiPM** Photomultiplier for LIDARs

Thermal TMOS IR uncooled sensor

TMOS Operation Principle

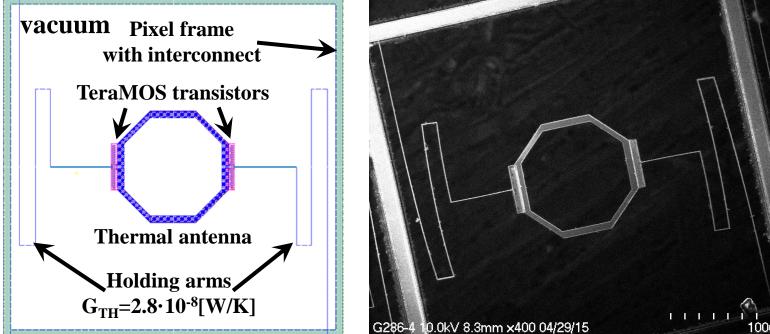
- The nano-machined thermally isolated transistor has very low thermal mass and very low thermal conductivity
- **Absorbed radiation increases the TMOS temperature** and modifies the current-voltage characteristics
- Transistor voltage detects temperature changes at



TMOS Disruptive Advantages

The MEMS processing was performed at the Micro-Nano-

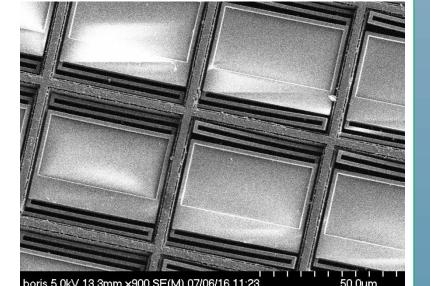
Fabrication & Printing Unit (MNF&PU), Technion


CMOS-SOI Standard Technology – Matured/Low cost/Low power **MEMS:** Thermally Isolated by post-processing dry etching High yield and uniformity

Thermal <u>TeraMOS</u> THz Uncooled Sensors

 TeraMOS: THz sensor that may enable monolithic uncooled passive THz imagers

vacuum Pixel frame

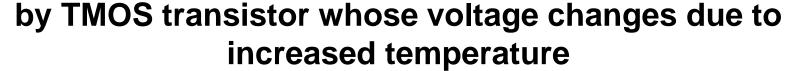


Thermal GMOS Gas Sensors

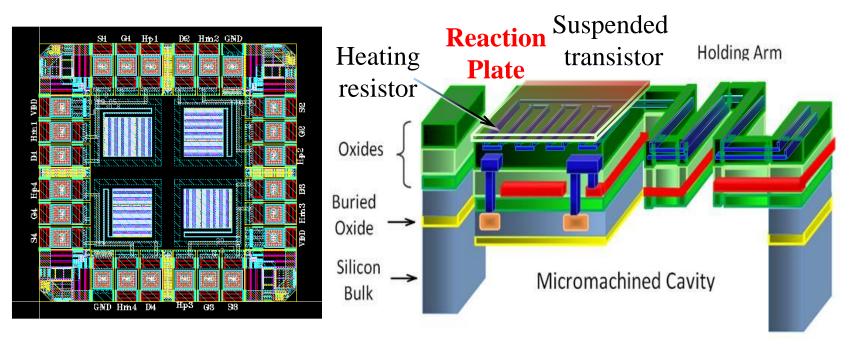
Operation Principle

Heated catalytic reaction plate activates the reaction of gases with oxygen in the air. Reaction of Volatile **Organic Components liberates heat which is detected**

- **TMOS** transistor is an active sensor (amplifier) with internal gain
- Highest responsivity: 10⁷ V/W
- All other thermal sensors are passive
- Low power operation at subthreshold $- < 1 \mu Watt$
- No "sun-burnt" effects as in bolometers
- Sensors operate in the presence of sun
- Compatible to mobile, wearables, IoT battery operated applications

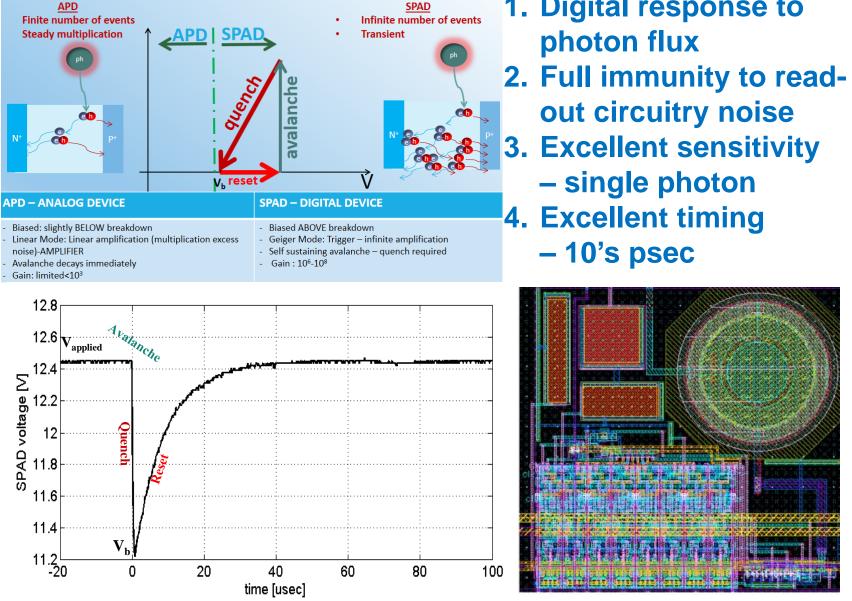


Acetone


Ethano

460 480 500 520

- Current responsivity of ~2.6 A/W,
- NEP of the order of NEP/ \sqrt{Hz} 1Hz=6.1pW/ \sqrt{Hz}
- D* of 0.41 \cdot 10¹⁰ cm $\sqrt{Hz/Watt}$


For Example: $CO+O_2 \rightarrow CO_2 + heat$

GMOS in the lab **Response on Acetone and Ethanol** Acetone concentration: ~560 ppm (10 μL drop) Ethanol concentration: ~560 ppm (8 μL drop) Operation point: $V_{as} = 0.9V$ > 0.6Temperature has been calculated as $\Delta T = P/G_{th}$ Kesponse, thermal conductance $G_{th} = 6 \cdot 10^{-5} W/K$ room temperature 24°C Voltage I 380 400 420 440 Temperature, K **GMOS sensor reponse to Acetone and Ethanol**

1000A of Palladium sputtered on the reaction electrode

CMOS SPAD – **Single Photon Avalanche Diode**

Journal Papers 1. Digital response to

[1] "CMOS-SOI-MEMS transistor for uncooled IR Imaging", IEEE Trans. Electron Devices, vol. 56, no. 9, pp. 1935-1942, Sep. 2009 [2] "Nanometric CMOS-SOI-NEMS transistor for uncooled THz sensing", IEEE Transactions On Electron Devices, vol 60(5), pp.1575-1583, 2013 [3] "CMOS-SOI-MEMS Thermal Antenna and Sensor for Uncooled THz Imaging", IEEE Transactions on Electron Devices, vol. 63, no. 3, pp. 1260-1265, March 2016 [4] "CMOS-SOI-MEMS Uncooled Infrared Security Sensor With Integrated Readout," IEEE Journal of the Electron Devices Society, vol. 4, no. 3, pp. 155-162, May 2016. **Patents**

9 Technion-TODOS patents relevant to CMOS-SOI-MEMS

Cross Fertilization Meeting @ Israel's Micro Nano Fabrication Unit, June 2017